Exercise 9

In Exercises 1-26, solve the following Volterra integral equations by using the Adomian decomposition method:

$$
u(x)=1-\int_{0}^{x}(x-t) u(t) d t
$$

Solution

Assume that $u(x)$ can be decomposed into an infinite number of components.

$$
u(x)=\sum_{n=0}^{\infty} u_{n}(x)
$$

Substitute this series into the integral equation.

$$
\begin{aligned}
\sum_{n=0}^{\infty} u_{n}(x) & =1-\int_{0}^{x}(x-t) \sum_{n=0}^{\infty} u_{n}(t) d t \\
u_{0}(x)+u_{1}(x)+u_{2}(x)+\cdots & =1-\int_{0}^{x}(x-t)\left[u_{0}(t)+u_{1}(t)+\cdots\right] d t \\
u_{0}(x)+u_{1}(x)+u_{2}(x)+\cdots & =\underbrace{1}_{u_{0}(x)}+\underbrace{\int_{0}^{x}(-1)(x-t) u_{0}(t) d t}_{u_{1}(x)}+\underbrace{\int_{0}^{x}(-1)(x-t) u_{1}(t) d t}_{u_{2}(x)}+\cdots
\end{aligned}
$$

If we set $u_{0}(x)$ equal to the function outside the integral, then the rest of the components can be deduced in a recursive manner. After enough terms are written, a pattern can be noticed,
allowing us to write a general formula for $u_{n}(x)$. Note that the $(x-t)$ in the integrand essentially means that we integrate the function next to it twice.

$$
\begin{aligned}
u_{0}(x) & =1 \\
u_{1}(x) & =\int_{0}^{x}(-1)(x-t) u_{0}(t) d t=(-1) \int_{0}^{x}(x-t)(1) d t=(-1) \frac{x^{2}}{2 \cdot 1} \\
u_{2}(x) & =\int_{0}^{x}(-1)(x-t) u_{1}(t) d t=(-1)^{2} \int_{0}^{x}(x-t)\left(\frac{t^{2}}{2 \cdot 1}\right) d t=(-1)^{2} \frac{x^{4}}{4 \cdot 3 \cdot 2 \cdot 1} \\
u_{3}(x) & =\int_{0}^{x}(-1)(x-t) u_{2}(t) d t=(-1)^{3} \int_{0}^{x}(x-t)\left(\frac{t^{4}}{4 \cdot 3 \cdot 2 \cdot 1}\right) d t=(-1)^{3} \frac{x^{6}}{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1} \\
& \vdots \\
u_{n}(x) & =\int_{0}^{x}(x-t) u_{n-1}(t) d t=(-1)^{n} \frac{x^{2 n}}{(2 n)!}
\end{aligned}
$$

Therefore,

$$
u(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!}=\cos x .
$$

